Space-time ‘bonds’, electromagnetism and graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contractible bonds in graphs

This paper addresses a problem posed by Oxley (Matroid Theory, Cambridge University Press, Cambridge, 1992) for matroids.We shall show that ifG is a 2-connected graph which is not a multiple edge, and which has no K5-minor, then G has two edge-disjoint non-trivial bonds B for which G/B is 2-connected. © 2004 Elsevier Inc. All rights reserved. MSC: 05C38; 05C40; 05C70

متن کامل

Time reversal in classical electromagnetism

Richard Feynman has claimed that anti-particles are nothing but particles ‘propagating backwards in time’; that time reversing a particle state always turns it into the corresponding anti-particle state. According to standard quantum field theory textbooks this is not so: time reversal does not turn particles into anti-particles. Feynman’s view is interesting because, in particular, it suggests...

متن کامل

Vector Space semi-Cayley Graphs

The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...

متن کامل

Time reversal in classical electromagnetism

Richard Feynman has claimed that anti-particles are nothing but particles ‘propagating backwards in time’; that time reversing a particle state always turns it into the corresponding anti-particle state. According to standard quantum field theory textbooks this is not so: time reversal does not turn particles into anti-particles. Feynman’s view is interesting because, in particular, it suggests...

متن کامل

Stars and Bonds in Crossing-Critical Graphs

The structure of previous known infinite families of crossing–critical graphs had led to the conjecture that crossing–critical graphs have bounded bandwidth. If true, this would imply that crossing–critical graphs have bounded degree, that is, that they cannot contain subdivisions of K1,n for arbitrarily large n. In this paper we prove two new results that revolve around this question. On the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1988

ISSN: 0166-218X

DOI: 10.1016/0166-218x(88)90021-2